
imagemounter Documentation
Release 1.5.1

Ralph Broenink, Peter Wagenaar

June 17, 2015

Contents

1 Important notes 3

2 Contents 5
2.1 Installation . 5
2.2 Command-line usage . 6
2.3 Python interface . 9

Python Module Index 17

i

ii

imagemounter Documentation, Release 1.5.1

imagemounter is a command-line utility and Python package to ease the mounting and unmounting of EnCase, Affuse
and dd disk images. It supports mounting disk images using xmount (with optional RW cache), affuse and ewfmount;
detecting DOS, BSD, Sun, Mac and GPT volume systems; mounting Ext, UFS, LUKS and NTFS volumes; detecting
(nested) LVM volume systems and mounting its subvolumes; and reconstructing RAID arrays.

In its default mode, imagemounter will try to start mounting the base image on a temporary mount point, detect the
volume system and then mount each volume seperately. If it fails finding a volume system, it will try to mount the
entire image as a whole if it succeeds in detecting what it actually is.

Contents 1

imagemounter Documentation, Release 1.5.1

2 Contents

CHAPTER 1

Important notes

Not all combinations of file and volume systems have been tested. If you encounter an issue, please try to change
some of your arguments first, before creating a new GitHub issue.

Please note that many Linux based operating systems will try to mount LVMs for you. Although imagemounter tries
to circumvent this automation, if you are unable to properly unmount, you should try to unmount through the interface
of your OS first. Another useful command is vgchange -a n to disable all LVMs currently active (only use if you are
not using a LVM for your own OS!).

With imount –clear you can clear MOST temporary files and mounts, though this will not clean everything. If you
used –pretty this tool can’t do anything for you. It is therefore recommended to first try and mount your image without
–pretty, to allow you to easily clean up if something crashes.

3

imagemounter Documentation, Release 1.5.1

4 Chapter 1. Important notes

CHAPTER 2

Contents

2.1 Installation

If you need an installation with full support, including all optional dependencies, you could use the following com-
mands:

apt-get install python-setuptools xmount ewf-tools afflib-tools sleuthkit lvm2 mdadm cryptsetup
pip install imagemounter

2.1.1 Python packages

This package does not require other packages, though the termcolor package is recommended if you are using the
imount command line utility with the --color argument.

If you wish to use pytsk3 support, you require python-dev and libtsk-dev. For compilation, the build-essential
package from your distribution is also required. After that, you can easily install the pytsk3 package from PyPI
(pip requires the --pre flag to allow installing the package).

2.1.2 Other dependencies

This package highly depends on other utilities to be present on your system. For a full installation, you require the
following tools:

• Mount tools

– xmount

– ewfmount, part of ewf-tools package, see note below

– affuse, part of afflib-tools package

– vmware-mount, part of VMware Workstation

• Volume detection

– mmls, part of sleuthkit package

– pytsk3

• Statistics, e.g. last mountpoint of volumes

– fsstat, part of sleuthkit package

• LVM volumes

5

imagemounter Documentation, Release 1.5.1

– lvm et al, all part of lvm2 package

• RAID arrays

– mdadm

• LUKS volumes

– cryptsetup

A basic installation contains at least one of the mount tools. Highly recommended is also fsstat, others are required
for specific file system types.

2.1.3 ewfmount on Ubuntu 13.10

Due to a bug with ewf-tools in Ubuntu <=13.10, it may be that ewfmount is not properly provided. This bug has
been resolved in Ubuntu 14.04. If you are using Ubuntu 13.10, you can install ewf-tools with ewfmount as follows:

1. Download a recent build of ewf-tools from https://launchpad.net/ubuntu/+source/libewf/20130416-2ubuntu1
(choose your arch under ‘Builds’ and download all deb files under ‘Built files’)

2. Execute sudo apt-get install libbfio1

3. Execute sudo dpkg -i ewf-tools_* libewf2_*

2.2 Command-line usage

One of the core functionalities of imagemounter is the command-line utility imount that eases the mounting and
unmounting of different types of disks and volumes. In its most basic form, the utility accepts a positional argument
pointing to a disk image, disk or volume, e.g.:

imount disk.E01

Multiple files can be passed to this command, allowing the mounting of volume systems that span multiple disks,
which can be useful for those wishing to reconstruct a system that entailed multiple disks or for reconstructing RAID
arrays.

By default, imount will mount each single volume in /tmp and wait until you confirm an unmount operation.
Common usage is therefore to keep imount running in a separate window and perform other operations in a second
window.

2.2.1 Arguments

The imount utility requires one (or more) positional arguments and offers the ability to pass several optional argu-
ments.

<image> [<image> ...]
The positional argument(s) should provide the path(s) to the disk images you want to mount. Many different
formats are supported, including the EnCase evidence format, split dd files, mounted hard drives, etc. In the
case of split files, you can refer to the folder containing these files.

If you specify more than one file, all files are considered to be part of the same originating system, which is
relevant for the --reconstruct command-line option.

6 Chapter 2. Contents

https://launchpad.net/ubuntu/+source/libewf/20130416-2ubuntu1

imagemounter Documentation, Release 1.5.1

Arguments that immediately exit

Some useful facilities.

--help
-h

Shows a help message and exits.

--version
Shows the current version and exits.

--clean
Option that will try to identify leftover files from previous imount executions and try to delete these. This will,
for instance, clean leftover /tmp/im_... mounts and mountpoints. This command will allow you to review
the actions that will be taken before they are done.

CLI behaviour

The next four command-line options alter the behaviour of the imount utility, but does not affect the behaviour of
the underlying imagemounter module.

--color
-c

Colorizes the output. Verbose message will be colored blue, for instance. Requires the termcolor package.

--wait
-w

Pauses the execution of the program on all warnings.

--keep
-k

Skips the unmounting at the end of the program.

--verbose
-v

Show verbose output

Additional features

This command-line option enables an additional and useful feature.

--reconstruct
-r

Attempts to reconstruct the full filesystem tree by identifying the last mountpoint of each identified volume and
bindmounting this in the previous root directory. For instance, if volumes have previously been mounted at / ,
/var and /home ; /var and /home will be bind-mounted in / , providing you with a single filesystem tree
in the mount location of / that is easily traversible.

This only works with Linux-based filesystems and only if / can be identified.

Implies --stats.

Mount behaviour

These arguments alter some pieces of the mount behaviour of imagemounter, mostly to ease your work.

--mountdir <directory>

2.2. Command-line usage 7

imagemounter Documentation, Release 1.5.1

-md <directory>
Specifies the directory to place volume mounts. Defaults to a temporary directory.

--pretty
-p

Uses pretty names for volume mount points. This is useful in combination with --mountdir, but you should
be careful using this option. It does not provide a fallback when the mount point is not available or other issues
arise. It can also not be cleaned with --clean.

--read-write
-rw

Will use read-write mounts. Written data will be stored using a local write cache.

Implies --method xmount.

Advanced options

While imagemounter will try to automatically detect as much as possible, there are some cases where you may
wish to override the automatically detected options. You can specify which detection methods should be used and
override the volume system and file system types if needed.

--method <method>
-m <method>

Specifies the method to use to mount the base image(s). Defaults to automatic detection, though different
methods deliver different results. Available options are xmount, affuse and ewfmount (defaulting to auto).

If you provide dummy, the base is not mounted but used directly.

--detection <method>
-d <method>

Specifies the volume detection method. Available options are pytsk3, mmls and auto, which is the default.
Though pytsk3 and mmls should in principle deliver identical results, pytsk3 can be considered more reliable as
this uses the C API of The Sleuth Kit (TSK). However, it also requires pytsk3 to be installed, which is not
possible with Py3K.

--vstype <type>
Specifies the type of the volume system, defaulting to detect. However, detection may not always succeed and
valid options are dos, bsd, sun, mac, gpt and dbfiller, though the exact available options depend on the detection
method and installed modules on the operating system.

--fsfallback <type>
Specifies a fallback option for the filesystem of a volume if automatic detection fails. Available options are ext,
ufs, ntfs, luks, lvm and unknown, with the latter simply mounting the volume without specifying type.

--fsforce
Forces the use of the filesystem type specified with --fsfallback for all volumes. In other words, disables
the automatic filesystem detection.

--fstypes <types>
Allows the specification of filesystem type for each volume separately. You can use subvolumes, examples
including:

1=ntfs
2=luks,2.0=lvm,2.0.1=ext

8 Chapter 2. Contents

imagemounter Documentation, Release 1.5.1

Advanced toggles

imount has some facilities that automatically detect some types of disks and volumes. However, these facilities may
sometimes fail and can be disabled if needed.

--stats
--no-stats

With stats rerieval is enabled, additional volume information is obtained from the fsstat command. This
could possibly slow down mounting and may cause random issues such as partitions being unreadable. However,
this additional information will probably include some useful information related to the volume system and is
required for commands such as --reconstruct.

Stats retrieval is enabled by default, but --stats can be used to override --no-stats.

--raid
--no-raid

By default, a detection is ran to detect whether the volume is part of a (former) RAID array. You can disable the
RAID check with --no-raid. If you provide both --raid and --no-raid, raid wins.

--single
--no-single

imount will, by default, try to detect whether the disk that is being mounted, contains an entire volume sys-
tem, or only a single volume. If you know your volumes are not single volumes, or you know they are, use
--no-single and --single respectively.

Where --single forces the mounting of the disk as a single volume, --no-single will prevent the identi-
fication of the disk as a single volume if no volume system is found.

2.3 Python interface

While imount heavily utilizes the Python API of imagemounter, this API is also available for other classes.

2.3.1 Data structure

The basic structure of imagemounter is the imagemounter.ImageParser class, which provides
access to underlying imagemounter.Disk and imagemounter.Volume objects. Each file name
passed to a new imagemounter.ImageParser object results in one imagemounter.Disk object.
imagemounter.Volume objects are created by analysis of the Disk object (each volume generates one object,
even if it is not mountable), and each imagemounter.Volume can have one or more subvolumes.

For instance, a LUKS volume may contain a LVM system that contains a Ext volume. This would create a Disk with
a Volume containing a Volume which contains the actual Ext Volume.

Most operations are managed on a Volume level, although RAIDs (and volume detection) are managed on a Disk
level and reconstruction is performed on a ImageParser level. This means the following main parts make up the
Python package:

• imagemounter.ImageParser, maintaining a list of Disks, providing several methods that are carried out
on all disks (e.g. mount) and reconstruct.

• imagemounter.Disk, which represents a single disk iamge and can be mounted, added to RAID, and detect
and maintain volumes. It is also responsible for maintaining the write cache.

• imagemounter.Volume, which can detect its own type and fill its stats, can be mounted, and detect LVM
(sub)volumes.

2.3. Python interface 9

imagemounter Documentation, Release 1.5.1

All three classes maintain an init() method that yields the volumes below it. You should call clean() on the
parser as soon as you are done; you may also call unmount() on separate volumes or disks, which will also unmount
all volumes below it. Warning: unmounting one of the RAID volumes in a RAID array, causes the entire array to be
unmounted.

2.3.2 Reference

If you utilize the API, you typically only require the ImageParser object, e.g.:

parser = ImageParser(['/path/to/disk'])
for v in parser.init():

print v.size
root = parser.reconstruct()
print root.mountpoint
parser.clean()

The best example of the use of the Python interface is the imount command. The entirety of all methods and attributes
is documented below.

class imagemounter.ImageParser(paths, out=None, verbose=False, color=False, **args)
Root object of the imagemounter Python interface. This class should be sufficient allowing access to the
underlying functions of this module.

Instantiation of this class does not automatically mount, detect or analyse Disk s, though it initialises each
provided path as a new Disk object.

Parameters

• paths (iterable) – list of paths to base images that should be mounted

• out – location where verbose output should be written, defaulting to sys.stdout

• verbose (bool) – indicates whether verbose output should be written

• color (bool) – indicates whether verbose output should be colored

• args – arguments that should be passed down to Disk and Volume objects

init(single=None, raid=True)
Handles all important disk-mounting tasks, i.e. calls the Disk.init() function on all underlying disks.
It yields every volume that is encountered, including volumes that have not been mounted.

Parameters

• single (bool|None) – indicates whether the Disk should be mounted as a single disk,
not as a single disk or whether it should try both (defaults to None)

• raid (bool) – indicates whether RAID detection is enabled

Return type generator

reconstruct()
Reconstructs the filesystem of all volumes mounted by the parser by inspecting the last mount point and
bind mounting everything.

Returns None on failure, or the root Volume on success

clean(remove_rw=False)
Cleans all volumes of all disks (Volume.unmount()) and all disks (Disk.unmount()). Volume
errors are ignored, but returns immediately on disk unmount error.

Parameters remove_rw (bool) – indicates whether a read-write cache should be removed

10 Chapter 2. Contents

imagemounter Documentation, Release 1.5.1

Returns whether the command completed successfully

Return type boolean

static force_clean(execute=True)
Executes a full clean-up of any left-over traces of previous runs of imagemounter. This detection is
separate from any program execution and may therefore detect not everything or detect too much.

Parameters execute (bool) – indicates whether the actions should be executed or only re-
turned

Returns list of all commands (to be) executed

Most methods above, especially init(), handle most complicated tasks. However, you may need some more
fine-grained control over the mount process, which may require you to use the following methods. Each of these
methods passes their activities down to all disks in the parser and return whether it succeeded.

rw_active()
Indicates whether a read-write cache is active in any of the disks.

Return type bool

get_volumes()
Gets a list of all volumes of all disks, concatenating Disk.get_volumes() of all disks.

Return type list

mount_disks()
Mounts all disks in the parser, i.e. calling Disk.mount() on all underlying disks. You probably want
to use init() instead.

Returns whether all mounts have succeeded

Return type bool

mount_raid()
Creates a RAID device and adds all devices to the RAID array, i.e. calling Disk.add_to_raid() on
all underlying disks. Should be called before mount_disks().

Returns whether all disks were successfully added

Return type bool

mount_single_volume()
Detects the full disk as a single volume and yields the volume. This calls
Disk.mount_single_volume() on all disks and should be called after mount_disks()

Return type generator

mount_multiple_volumes()
Detects volumes in all disks (all mounted as a volume system) and yields the volumes. This calls
Disk.mount_multiple_volumes() on all disks and should be called after mount_disks().

Return type generator

mount_volumes(single=None)
Detects volumes (as volume system or as single volume) in all disks and yields the volumes. This calls
Disk.mount_multiple_volumes() on all disks and should be called after mount_disks().

Return type generator

For completeness, this is a list of all attributes of ImageParser:

disks
List of all Disk objects.

2.3. Python interface 11

imagemounter Documentation, Release 1.5.1

paths
out
verbose
verbose_color
args

See the constructor of ImageParser.

class imagemounter.Disk(parser, path, offset=0, vstype=u’detect’, read_write=False, method=u’auto’,
detection=u’auto’, multifile=True, index=None, **args)

Representation of a disk, image file or anything else that can be considered a disk.

Instantiation of this class does not automatically mount, detect or analyse the disk. You will need the init()
method for this.

Parameters

• parser (ImageParser) – the parent parser

• offset (int) – offset of the disk where the volume (system) resides

• vstype (str) – the volume system type

• read_write (bool) – indicates whether the disk should be mounted with a read-write
cache enabled

• method (str) – the method to mount the base image with

• detection (str) – the method to detect volumes in the volume system with

• multifile (bool) – indicates whether mount() should attempt to call the underlying
mount method with all files of a split file when passing a single file does not work

• args – arguments that should be passed down to Volume objects

init(single=None, raid=True)
Calls several methods required to perform a full initialisation: mount(), add_to_raid() and
mount_volumes() and yields all detected volumes.

Parameters

• single (bool|None) – indicates whether the disk should be mounted as a single disk, not
as a single disk or whether it should try both (defaults to None)

• raid (bool) – indicates whether RAID detection is enabled

Return type generator

unmount(remove_rw=False)
Removes all ties of this disk to the filesystem, so the image can be unmounted successfully. Warning: this
method will destruct the entire RAID array in which this disk takes part.

The following methods are only required if you want some fine-grained control, typically if you are not using
init().

rw_active()
Indicates whether anything has been written to a read-write cache.

get_fs_path()
Returns the path to the filesystem. Most of the times this is the image file, but may instead also return the
MD device or loopback device the filesystem is mounted to.

Return type str

get_raw_path()
Returns the raw path to the mounted disk image, i.e. the raw .dd, .raw or ewf1 file.

12 Chapter 2. Contents

imagemounter Documentation, Release 1.5.1

Return type str

get_volumes()
Gets a list of all volumes in this disk, including volumes that are contained in other volumes.

mount()
Mounts the base image on a temporary location using the mount method stored in method. If mounting
was successful, mountpoint is set to the temporary mountpoint.

If read_write is enabled, a temporary read-write cache is also created and stored in rwpath.

Returns whether the mounting was successful

Return type bool

mount_volumes(single=None)
Generator that detects and mounts all volumes in the disk.

If single is True, this method will call mount_single_volumes(). If single is False, only
mount_multiple_volumes() is called. If single is None, mount_multiple_volumes() is
always called, being followed by mount_single_volume() if no volumes were detected.

mount_multiple_volumes()
Generator that will detect volumes in the disk file, generate Volume objects based on this information and
call init() on these.

mount_single_volume()
Mounts a volume assuming that the mounted image does not contain a full disk image, but only a single
volume.

A new Volume object is created based on the disk file and init() is called on this object.

This function will typically yield one volume, although if the volume contains other volumes, multiple
volumes may be returned.

is_raid()
Tests whether this image (was) part of a RAID array. Requires mdadm to be installed.

add_to_raid()
Adds the disk to a central RAID volume.

This function will first test whether it is actually a RAID volume by using is_raid() and, if so, will
add the disk to the array via a loopback device.

Returns whether the addition succeeded

The following attributes are also available:

name
Pretty name of the disk.

index
Disk index. May be None if it is the only disk of this type.

mountpoint
The mountpoint of the disk, after a call to mount().

rwpath
The path to the read-write cache, filled after a call to mount().

volumes
List of all direct child volumes of this disk, excluding all subvolumes. See get_volumes().

volume_source
The source of the volumes of this disk, either single or multi, filled after a call to mount_volumes().

2.3. Python interface 13

imagemounter Documentation, Release 1.5.1

loopback
md_device

Used for RAID support.

parser
path
offset
vstype
read_write
method
detection
multifile
args

See the constructor of Disk.

class imagemounter.Volume(disk=None, stats=False, fsforce=False, fsfallback=None, fstypes=None,
pretty=False, mountdir=None, **args)

Information about a volume. Note that every detected volume gets their own Volume object, though it may
or may not be mounted. This can be seen through the mountpoint attribute – if it is not set, perhaps the
exception attribute is set with an exception.

Creates a Volume object that is not mounted yet.

Parameters

• disk (Disk) – the parent disk

• stats (bool) – indicates whether init() should try to fill statistics

• fsforce (bool) – indicates whether the file system type in fsfallback should be used for
all file systems

• fsfallback (str) – the file system type to use when automatic detection fails

• fstypes (dict) – dict mapping volume indices to file system types to (forcibly) use

• pretty (bool) – indicates whether pretty names should be used for the mountpoints

• mountdir (str) – location where mountpoints are created, defaulting to a temporary loca-
tion

• args – additional arguments

init(no_stats=False)
Generator that mounts this volume and either yields itself or recursively generates its subvolumes.

More specifically, this function will call fill_stats() (iff no_stats is False), followed by mount(),
followed by a call to detect_mountpoint(), after which self is yielded, or the result of the
init() call on each subvolume is yielded

unmount()
Unounts the volume from the filesystem.

The following methods offer some more information about the volume:

get_description(with_size=True)
Obtains a generic description of the volume, containing the file system type, index, label and NTFS version.
If with_size is provided, the volume size is also included.

get_safe_label()
Returns a label that is safe to add to a path in the mountpoint for this volume.

get_size_gib()
Obtains the size of the volume in a human-readable format (i.e. in TiBs, GiBs or MiBs).

14 Chapter 2. Contents

imagemounter Documentation, Release 1.5.1

get_volumes()
Recursively gets a list of all subvolumes and the current volume.

These functions offer access to some internals:

get_fs_type()
Determines the FS type for this partition. This function is used internally to determine which mount system
to use, based on the file system description. Return values include ext, bsd, ntfs, lvm and luks.

get_raw_base_path()
Retrieves the base mount path of the volume. Typically equals to Disk.get_fs_path() but may also
be the path to a logical volume. This is used to determine the source path for a mount call.

mount()
Based on the file system type as determined by get_fs_type(), the proper mount command is executed
for this volume. The volume is mounted in a temporary path (or a pretty path if pretty is enabled) in
the mountpoint as specified by mountpoint.

If the file system type is a LUKS container, open_luks_container() is called only. If it is a LVM
volume, find_lvm_volumes() is called after the LVM has been mounted. Both methods will add
subvolumes to volumes

Returns boolean indicating whether the mount succeeded

bindmount(mountpoint)
Bind mounts the volume to another mountpoint. Only works if the volume is already mounted. Note that
only the last bindmountpoint is remembered and cleaned.

Returns bool indicating whether the bindmount succeeded

fill_stats()
Using fsstat, adds some additional information of the volume to the Volume.

detect_mountpoint()
Attempts to detect the previous mountpoint if this was not done through fill_stats(). This detection
does some heuristic method on the mounted volume.

find_lvm_volumes(force=False)
Performs post-mount actions on a LVM. Scans for active volume groups from the loopback device, acti-
vates it and fills volumes with the logical volumes.

If force is true, the LVM detection is ran even when the LVM is not mounted on a loopback device.

open_luks_container()
Command that is an alternative to the mount() command that opens a LUKS container. The opened
volume is added to the subvolume set of this volume. Requires the user to enter the key manually.

Returns the Volume contained in the LUKS container, or None on failure.

The following details may also be available as attributes:

size
The size of the volume in bytes.

offset
The offset of the volume in the disk in bytes.

index
The index of the volume in the disk. If there are subvolumes, the index is separated by periods, though the
exact format depends on the detection method and its format.

flag
Indicates whether this volume is allocated (alloc), unallocated (unalloc) or a meta volume (meta).

2.3. Python interface 15

imagemounter Documentation, Release 1.5.1

fsdescription
A description of the file system type.

lastmountpoint
The last mountpoint of this volume. Set by fill_stats() or detect_mountpoint() and only
available for UFS and Ext volumes.

label
The volume label as detected by fill_stats().

version
The volume version as detected by fill_stats().

fstype
The volume file system type as detected by fill_stats().

mountpoint
The mountpoint of the volume after mount() has been called.

bindmountpoint
The mountpoint of the volume after bindmount() has been called.

loopback
The loopback device used by the volume after mount() (or related methods) has been called.

exception
Contains an exception that occurred during a call to mount().

was_mounted
Boolean indicating that the volume has successfully been mounted during its lifetime.

volumes
parent

volumes contains a list of all subvolumes of this volume; parent contains the parent volume (if any).

volume_group
lv_path

Attributes used for LVM support

luks_path
Attribute used for LUKS support

disk
stats
fsforce
fsfallback
fstypes
pretty
mountdir
args

See the constructor of Volume.

16 Chapter 2. Contents

Python Module Index

i
imagemounter, 10

17

imagemounter Documentation, Release 1.5.1

18 Python Module Index

Index

Symbols
–clean

command line option, 7
–color

command line option, 7
–detection <method>

command line option, 8
–fsfallback <type>

command line option, 8
–fsforce

command line option, 8
–fstypes <types>

command line option, 8
–help

command line option, 7
–keep

command line option, 7
–method <method>

command line option, 8
–mountdir <directory>

command line option, 7
–no-raid

command line option, 9
–no-single

command line option, 9
–no-stats

command line option, 9
–pretty

command line option, 8
–raid

command line option, 9
–read-write

command line option, 8
–reconstruct

command line option, 7
–single

command line option, 9
–stats

command line option, 9
–verbose

command line option, 7
–version

command line option, 7
–vstype <type>

command line option, 8
–wait

command line option, 7
-c

command line option, 7
-d <method>

command line option, 8
-h

command line option, 7
-k

command line option, 7
-m <method>

command line option, 8
-md <directory>

command line option, 7
-p

command line option, 8
-r

command line option, 7
-rw

command line option, 8
-v

command line option, 7
-w

command line option, 7

A
add_to_raid() (imagemounter.Disk method), 13
args (imagemounter.Disk attribute), 14
args (imagemounter.ImageParser attribute), 11
args (imagemounter.Volume attribute), 16

B
bindmount() (imagemounter.Volume method), 15
bindmountpoint (imagemounter.Volume attribute), 16

19

imagemounter Documentation, Release 1.5.1

C
clean() (imagemounter.ImageParser method), 10
command line option

–clean, 7
–color, 7
–detection <method>, 8
–fsfallback <type>, 8
–fsforce, 8
–fstypes <types>, 8
–help, 7
–keep, 7
–method <method>, 8
–mountdir <directory>, 7
–no-raid, 9
–no-single, 9
–no-stats, 9
–pretty, 8
–raid, 9
–read-write, 8
–reconstruct, 7
–single, 9
–stats, 9
–verbose, 7
–version, 7
–vstype <type>, 8
–wait, 7
-c, 7
-d <method>, 8
-h, 7
-k, 7
-m <method>, 8
-md <directory>, 7
-p, 8
-r, 7
-rw, 8
-v, 7
-w, 7

D
detect_mountpoint() (imagemounter.Volume method), 15
detection (imagemounter.Disk attribute), 14
Disk (class in imagemounter), 12
disk (imagemounter.Volume attribute), 16
disks (imagemounter.ImageParser attribute), 11

E
exception (imagemounter.Volume attribute), 16

F
fill_stats() (imagemounter.Volume method), 15
find_lvm_volumes() (imagemounter.Volume method), 15
flag (imagemounter.Volume attribute), 15
force_clean() (imagemounter.ImageParser static method),

11

fsdescription (imagemounter.Volume attribute), 15
fsfallback (imagemounter.Volume attribute), 16
fsforce (imagemounter.Volume attribute), 16
fstype (imagemounter.Volume attribute), 16
fstypes (imagemounter.Volume attribute), 16

G
get_description() (imagemounter.Volume method), 14
get_fs_path() (imagemounter.Disk method), 12
get_fs_type() (imagemounter.Volume method), 15
get_raw_base_path() (imagemounter.Volume method), 15
get_raw_path() (imagemounter.Disk method), 12
get_safe_label() (imagemounter.Volume method), 14
get_size_gib() (imagemounter.Volume method), 14
get_volumes() (imagemounter.Disk method), 13
get_volumes() (imagemounter.ImageParser method), 11
get_volumes() (imagemounter.Volume method), 15

I
imagemounter (module), 10
ImageParser (class in imagemounter), 10
index (imagemounter.Disk attribute), 13
index (imagemounter.Volume attribute), 15
init() (imagemounter.Disk method), 12
init() (imagemounter.ImageParser method), 10
init() (imagemounter.Volume method), 14
is_raid() (imagemounter.Disk method), 13

L
label (imagemounter.Volume attribute), 16
lastmountpoint (imagemounter.Volume attribute), 16
loopback (imagemounter.Disk attribute), 13
loopback (imagemounter.Volume attribute), 16
luks_path (imagemounter.Volume attribute), 16
lv_path (imagemounter.Volume attribute), 16

M
md_device (imagemounter.Disk attribute), 13
method (imagemounter.Disk attribute), 14
mount() (imagemounter.Disk method), 13
mount() (imagemounter.Volume method), 15
mount_disks() (imagemounter.ImageParser method), 11
mount_multiple_volumes() (imagemounter.Disk

method), 13
mount_multiple_volumes() (imagemounter.ImageParser

method), 11
mount_raid() (imagemounter.ImageParser method), 11
mount_single_volume() (imagemounter.Disk method), 13
mount_single_volume() (imagemounter.ImageParser

method), 11
mount_volumes() (imagemounter.Disk method), 13
mount_volumes() (imagemounter.ImageParser method),

11

20 Index

imagemounter Documentation, Release 1.5.1

mountdir (imagemounter.Volume attribute), 16
mountpoint (imagemounter.Disk attribute), 13
mountpoint (imagemounter.Volume attribute), 16
multifile (imagemounter.Disk attribute), 14

N
name (imagemounter.Disk attribute), 13

O
offset (imagemounter.Disk attribute), 14
offset (imagemounter.Volume attribute), 15
open_luks_container() (imagemounter.Volume method),

15
out (imagemounter.ImageParser attribute), 11

P
parent (imagemounter.Volume attribute), 16
parser (imagemounter.Disk attribute), 14
path (imagemounter.Disk attribute), 14
paths (imagemounter.ImageParser attribute), 11
pretty (imagemounter.Volume attribute), 16

R
read_write (imagemounter.Disk attribute), 14
reconstruct() (imagemounter.ImageParser method), 10
rw_active() (imagemounter.Disk method), 12
rw_active() (imagemounter.ImageParser method), 11
rwpath (imagemounter.Disk attribute), 13

S
size (imagemounter.Volume attribute), 15
stats (imagemounter.Volume attribute), 16

U
unmount() (imagemounter.Disk method), 12
unmount() (imagemounter.Volume method), 14

V
verbose (imagemounter.ImageParser attribute), 11
verbose_color (imagemounter.ImageParser attribute), 11
version (imagemounter.Volume attribute), 16
Volume (class in imagemounter), 14
volume_group (imagemounter.Volume attribute), 16
volume_source (imagemounter.Disk attribute), 13
volumes (imagemounter.Disk attribute), 13
volumes (imagemounter.Volume attribute), 16
vstype (imagemounter.Disk attribute), 14

W
was_mounted (imagemounter.Volume attribute), 16

Index 21

	Important notes
	Contents
	Installation
	Command-line usage
	Python interface

	Python Module Index

